RINCIPLES OF OPERATING SYSTEMS

LECTURE- 16
Virtual Memory- Demand paging

Introduction

Virtual memory — separation of user logical memory from
physical memory.

Only part of the program needs to be in memory for
execution

Logical address space can therefore be much larger
than physical address space

Allows address spaces to be shared by several
processes

Allows for more efficient process creation

Introduction

Virtual memory can be implemented via:
Demand paging
Demand segmentation

Virtual Memory That is Larger Than Physical
Memory

page 0
page 1
page 2 //—\
—
memory
map ¥/
page v physical
memory

virtual
memory

Virtual-address Space
v o e N

stack

|
|

heap

data

code

Shared Library Using Virtual Memory

stack

|

stack

shared library

|

shared
pages

l

shared library

heap

data

code

1

heap

data

code

Demand Paging
T
o Bring a page into memory only when it is needed
o Less I/O needed
o Less memory needed
o Faster response
o More users

Demand Paging

Page is needed = reference to it
iInvalid reference = abort
not-in-memory = bring to memory

Lazy swapper — never swaps a page into memory
unless page will be needed

Swapper that deals with pages is a pager

Transfer of a Paged Memory to Contiguous Disk
Space

-
swap out Ol 1 2l 3|
progAram L
a0 s 601 701
- S SM1OM11[]
A 1213014 15[|
program
B *\ swap in 18|:|17|;|18|_|__|19|_T_|
) 2021 [122[23 []
main
memory

Valid-Invalid Bit

With each page table entry a valid—invalid bit is
associated

(v = In-memory, | = not-in-memory)
Initially valid—invalid bit is set to | on all entries

During address translation, if valid—invalid bit in
page table entry is | = page fault

Frame # valid-invalid bit

page table

Page Table When Some Pages Are Not in Main

] .
1
0 A 2
valid—i_nvalid
1 B frame bit 3 AR
c N ¥ S ci———-
2 of 4 [v 488
g o] 1 i 5
2| 6 |v
al E 3 i 6 C A B
Bl E 4 i 7
5/ 9 [y C D E
A sl 8
7 . 7 i 9 F E
logical page table 10
memory
11 \w//
12
13
14
15
physical memory

Page Fault

If there is a reference to a page, and the referenced page
IS not in memory, but the page is a valid page in the
process’s virtual memory, then it is a page faullt.

First reference to that page will trap to operating system
page fault.

Page Fault

Operating system looks at another table (may be
captured in PCB) to decide:

Invalid reference = abort
Just not in memory

If (there Is a free frame)
Get empty frame

Swap page into frame

Reset tables

Set validation bit = v

Restart the instruction that caused the page fault

Steps Iin Handling a Page Fault

- page is on
backing store //_\
operating
system @
reference
@ trap
load M |« X i
restart page table
instruction
free frame |« -
reset page bring in
table missing page
physical
memory

Performance of Demand Paging

Page Fault Rate 0 <p<1.0
If p =0 = no page faults
If p =1 =» every reference is a fault

Effective Access Time (EAT)
EAT = (1 — p) X memory access
+p x(1. page fault overhead
+ 2. swap page out
+ 3. swap page in
+ 4. restart overhead)

Demand Paging Example

Memory access time = 200 nanoseconds

Average page-fault service time = 8 milliseconds

EAT = (1 —p) x 200 + p (8 milliseconds)
=(1-p) x200 + p x 8,000,000
=200 + p x 7,999,800

If one access out of 1,000 causes a page fault, then
EAT = 8.2 microseconds.
This is a slowdown by a factor of 40!

