
PRINCIPLES OF OPERATING SYSTEMS

LECTURE- 16
Virtual Memory- Demand paging

Introduction

Virtual memory – separation of user logical memory from
physical memory.

 Only part of the program needs to be in memory for
execution

 Logical address space can therefore be much larger
than physical address space

 Allows address spaces to be shared by several
processes

 Allows for more efficient process creation

Introduction

 Virtual memory can be implemented via:
 Demand paging
 Demand segmentation

Virtual Memory That is Larger Than Physical
Memory



Virtual-address Space

Shared Library Using Virtual Memory

Demand Paging

 Bring a page into memory only when it is needed
 Less I/O needed
 Less memory needed
 Faster response
 More users

Demand Paging

 Page is needed  reference to it
 invalid reference  abort
 not-in-memory  bring to memory

 Lazy swapper – never swaps a page into memory
unless page will be needed
 Swapper that deals with pages is a pager

Transfer of a Paged Memory to Contiguous Disk
Space

Valid-Invalid Bit
 With each page table entry a valid–invalid bit is

associated
(v  in-memory, i  not-in-memory)

 Initially valid–invalid bit is set to i on all entries

 During address translation, if valid–invalid bit in
page table entry is i  page fault

v
v
v
v
i

i
i

….

Frame # valid-invalid bit

page table

i

Page Table When Some Pages Are Not in Main
Memory

Page Fault

If there is a reference to a page, and the referenced page
is not in memory, but the page is a valid page in the
process’s virtual memory, then it is a page fault.

First reference to that page will trap to operating system
page fault.

Page Fault

1. Operating system looks at another table (may be
captured in PCB) to decide:
 Invalid reference  abort
 Just not in memory

2. If (there is a free frame)
1. Get empty frame

3. Swap page into frame
4. Reset tables
5. Set validation bit = v
6. Restart the instruction that caused the page fault

Steps in Handling a Page Fault

Performance of Demand Paging

 Page Fault Rate 0  p  1.0
 if p = 0  no page faults
 if p = 1  every reference is a fault

 Effective Access Time (EAT)
EAT = (1 – p) x memory access

+ p x (1. page fault overhead
+ 2. swap page out
+ 3. swap page in
+ 4. restart overhead)

Demand Paging Example

 Memory access time = 200 nanoseconds

 Average page-fault service time = 8 milliseconds

 EAT = (1 – p) x 200 + p (8 milliseconds)
= (1 – p) x 200 + p x 8,000,000
= 200 + p x 7,999,800

 If one access out of 1,000 causes a page fault, then
EAT = 8.2 microseconds.

This is a slowdown by a factor of 40!!

